对应环境源码
# libraries
library(ggraph)
library(igraph)
library(tidyverse)
# create an edge list data frame giving the hierarchical structure of your individuals
d1 <- data.frame(from="origin", to=paste("group", seq(1,5), sep=""))
d2 <- data.frame(from=rep(d1$to, each=5), to=paste("subgroup", seq(1,30), sep=""))
edges <- rbind(d1, d2)
# Create a graph object
mygraph <- graph_from_data_frame( edges )
# Basic tree
ggraph(mygraph, layout = 'dendrogram', circular = TRUE ##�Ƿ�Բ��##
) +
geom_edge_diagonal() +
geom_node_point() +
theme_void()
##��״ͼ
my<-fenbu
order<-sort(my$sum,index.return=TRUE,decreasing = FALSE)
ggplot(data = my,aes(x=job,y=value))+
geom_bar(stat="identity",fill="#69B3A2")+
coord_flip()#####ˮƽ��תͼ��+
my<-cont
order<-sort(my$sum,index.return=TRUE,decreasing = FALSE)
ggplot(data = my,aes(x=job,y=value))+
geom_bar(stat="identity",fill="#69B3A2")
###���ͼ
# library
library(treemap)
library(d3treeR)
# dataset
group <- c(rep("cover",2),rep("psychological",2),rep("best outlook",2),rep("other cause",1))
subgroup <- paste("subgroup" , c(1,2,1,2,1,2,1), sep="-")
value <- c(6.2,3.5,67.9,9.4,44.1,42.5,1.2)
data <- data.frame(group,subgroup,value)
# basic treemap
p <- treemap(data,
index=c("group","subgroup"),
vSize="value",
type="index",
palette = "Set2",
bg.labels=c("white"),
align.labels=list(
c("center", "center"),
c("right", "bottom")
)
)
# make it interactive ("rootname" becomes the title of the plot):
inter <- d3tree2( p , rootname = "General" )
# save the widget
# library(htmlwidgets)
# saveWidget(inter, file=paste0( getwd(), "/HtmlWidget/interactiveTreemap.html"))
group <- c(rep("attitude",4))
subgroup <- paste("subgroup" , c(1,2,3,4), sep="-")
value <- c(5.6,21.6,40.5,32.3)
data <- data.frame(group,subgroup,value)
# basic treemap
p <- treemap(data,
index=c("group","subgroup"),
vSize="value",
type="index",
palette = "Set2",
bg.labels=c("white"),
align.labels=list(
c("center", "center"),
c("right", "bottom")
)
)
# make it interactive ("rootname" becomes the title of the plot):
inter <- d3tree2( p , rootname = "General" )
##ԲԲͼ
# Libraries
library(tidyverse)
library(hrbrthemes)
library(circlepackeR)
# Load dataset from github
data <- read.table("https://raw.githubusercontent.com/holtzy/data_to_viz/master/Example_dataset/11_SevCatOneNumNestedOneObsPerGroup.csv", header=T, sep=";")
data[ which(data$value==-1),"value"] <- 1
colnames(data) <- c("Continent", "Region", "Country", "Pop")
# Remove a few problematic lines
data <- data %>% filter(Continent!="") %>% droplevels()
# Change the format. This use the data.tree library. This library needs a column that looks like root/group/subgroup/..., so I build it
library(data.tree)
data$pathString <- paste("world", data$Continent, data$Region, data$Country, sep = "/")
population <- as.Node(data)
# You can custom the minimum and maximum value of the color range.
circlepackeR(population, size = "Pop", color_min = "hsl(56,80%,80%)", color_max = "hsl(341,30%,40%)")##r�汾��ƥ��
##�ѵ�ͼ
library(ggplot2)
library(RColorBrewer)
library(reshape2)
mydata<-���λ���Ӫҵ��
ggplot(data=mydata,aes(x=���λ���,y=Ӫҵ��.����.))+
geom_bar(stat="identity",position="stack",color="black",
width=0.7,size=0.25)+
scale_fill_manual(values=brewer.pal(9,"YlOrRd")[c(3:7)])+
ylim(0,12000)